Fructosamine + Calibrator
For the Quantitative Determination of Fructosamine

INTENDED USE
For the quantitative determination of Fructosamine in human serum. FOR IN VITRO DIAGNOSTIC USE ONLY.

CLINICAL SIGNIFICANCE
The determination of fructosamine is most commonly performed for the evaluation of glycemic control in diabetes. Fructosamine values provide an indication of glucose levels over the preceding 2-3 weeks. A higher fructosamine value indicates poorer glycemic control.1,2

INTRODUCTION AND SUMMARY
Glycated proteins are formed by a non-enzymatic reaction between glucose and protein in which unstable Schiff bases are formed, followed by an Amadori conversion to form stable ketoamines.1,2 These glycated proteins include glycohemoglobin, glycoalbumin and glycated total protein. Fructosamine is a term that has come into acceptance and refers to both glycoalbumin and glycated total protein.1,2 As the average life span of these proteins is about 2-3 weeks, the level of fructosamine provides a reflection of the average glucose concentration over that time.1,2 Fructosamine and glycohemoglobin are both used to monitor diabetic control. However, each assay provides information for a specific time frame that is related to the analyte being measured. Since the half-life of hemoglobin is closer to 6-8 weeks, glycohemoglobin measurements reflect the average glucose concentration over this longer period of time.1,2 Therefore, in comparison to glycohemoglobin determinations, fructosamine provides an index of intermediate-term diabetic control as opposed to the longer term for glycohemoglobin. Also, because of the shorter half-life of the glycated albumin and total proteins, fructosamine measurements are more sensitive to changes in diabetic control. This provides a means to alert the physician to improvement, or deterioration in control much earlier than glycohemoglobin determinations.1,2

There have been several methods developed for the determination of fructosamine. These methods include colorimetric procedures. A procedure using furousoin and HPLC is accepted as the reference method however, a colorimetric procedure using nitroblue tetrazolium (NBT) has gained popularity due to its speed, reproducibility and ease of automation.1,2 The reagent presented here is a modification of the commonly used NBT method.

PRINCIPLE OF TEST
The fructosamine reagent set is based on the ability of ketoamines to reduce NBT to a formazan dye under alkaline conditions. The rate of formazan formation, measured at 550 nm, is directly proportional to the fructosamine concentration.

KIT COMPOSITION
KAI-043 / KAI-050:
Fructosamine Buffer: Carbonate buffer 100 mM, pH 10.35 ± 0.1, sodium azide less than 0.1%.
Fructosamine Substrate: Nitroblue tetrazolium (NBT) 0.57 mM, surfactant, non-reactive stabilizers and fillers.
Fructosamine Calibrator: pooled human serum containing buffers, stabilizers and fillers.
KAI-048C:
Fructosamine Calibrator: pooled human serum containing buffers, stabilizers and fillers.

WARNINGS AND PRECAUTIONS
1. For in vitro diagnostic use. Rx only.
2. Do not use reagents past their expiration date stated on each reagent container label.
3. Do not pipette by mouth. Avoid ingestion and contact with skin.
4. Reagents in this kit contain sodium azide (less than 0.1%) as a preservative. Sodium azide may form explosive compounds in metal drain lines. When disposing of reagents through plumbing fixtures, flush with copious amounts of water. For further information, refer to “Decontamination of Laboratory Sink Drains to Remove Azide Salts,” in the Manual Guide-Safety Management No. CDC-22 issued by the Centers for Disease Control, Atlanta, Georgia.
5. All specimens, calibrators and controls should be handled as potentially infectious, using safe laboratory procedures.
6. Human serum was used in the manufacture of the calibrator. Each donor unit was tested and found negative, or non-reactive for HbsAb, HCV and HIV.

REAGENT PREPARATION
Reconstitute the Fructosamine Substrate with the amount of Fructosamine Buffer specified on the vial label. Swirl gently to dissolve. The Fructosamine Calibrator is supplied as a liquid stable serum based product. It is ready to use upon opening.

REAGENT STORAGE AND STABILITY
1. Un-reconstituted reagents are stable until the expiration date on the kit label when stored at 2-8°C for best results.
2. Reconstituted substrate is stable for 7 days if stored at room temperature (15-25°C) or 30 days if stored refrigerated (2-8°C).
3. After opening, calibrator is stable for 30 days stored at 2-8°C.

SPECIMEN COLLECTION AND STORAGE
1. Human serum, separated from the cells as quickly as possible, is the specimen of choice.
2. Collect specimens per NCCLS document H4-A3.
3. Avoid hemolysis or contamination of the sample with hemoglobin as glycated hemoglobin will react in the same manner as fructosamine.
4. Serum specimens are stable for one week if stored at 2 to 8°C. Storage at -20°C is not recommended.1,3

PROCEDURE

Materials Supplied
KAI-043 Fructosamine + Calibrator
Reagent 1 (R1) Buffer 1 x 120 mL
Reagent 2 (R2) Substrate 5 x 11 mL
Fructosamine Calibrator 1 x 2 mL
KAI-050 Fructosamine + Calibrator (L)
Reagent 1 (R1) Buffer 1 x 120 mL
Reagent 2 (R2) Substrate 10 x 11 mL
Fructosamine Calibrator 1 x 2 mL
KAI-048C Fructosamine Calibrator
Fructosamine Buffer 1 x 120 mL

Materials Required But Not Supplied
1. Pipetting devices
2. Test tubes/rack
3. Timing device
4. Heating block
5. Spectrophotometer capable of reading at 550 nm.
6. Fructosamine Controls, cat. no. K52C-6M.

CALCULATIONS
For the calculation of fructosamine, the following equation is used:

\[\text{Fructosamine (mmol/L)} = \frac{\text{Sample} - \text{Calibrator}}{1.2} \]

Where:
- \(\text{Sample} \) = Absorbance of sample
- \(\text{Calibrator} \) = Absorbance of calibrator

\[A = \text{Absorbance} \]

\[\frac{A_1 - A_2}{A_3} \] for Fructosamine

\[\frac{A_1}{A_2} \] for Calibrator

\[\text{Fructosamine} = X \text{ Conc. of Calibrator} \times \frac{A_1}{A_2} \]

Example: If \(A_1 \) Sample = 0.100 and \(A_2 \) Sample = 0.600, \(A_1 \) Calibrator = 0.100 and \(A_2 \) Calibrator = 0.400, And Concentration of Calibrator = 3.0 mmol/L then:

\[0.600 - 0.100 \times 3.0 \text{ mmol/L} = 5.0 \text{ mmol/L} \]

\[0.400 - 0.100 \text{ mmol/L} \]
LIMITATIONS OF PROCEDURE
1. The procedure described is linear to 10.0 mmol/L. Samples with values exceeding 10.0 mmol/L should be diluted 1:1 with saline, re-assayed, and the result multiplied by two.
2. Hemoglobin greater than 200 mg/dL may give falsely elevated results.

PERFORMANCE
Sensitivity: An investigation of the absorbance change per minute for ten replicates of two samples, with known concentrations of fructosamine, indicated that an absorbance change per minute of 0.042 was approximately equivalent to 1 mmol/L fructosamine.

Precision: Precision studies were performed following a modification of the procedure contained in NCCLS document EP5-T2.15

<table>
<thead>
<tr>
<th>Within Day (n=20)</th>
<th>Day to Day (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean S.D. C.V.%</td>
<td>Mean S.D. C.V.%</td>
</tr>
<tr>
<td>1.97 0.04 2.0</td>
<td>1.91 0.06 3.1</td>
</tr>
<tr>
<td>5.57 0.10 1.8</td>
<td>5.72 0.14 2.4</td>
</tr>
</tbody>
</table>

Correlation: Results obtained with this reagent (y), in 45 samples ranging in fructosamine from 1.17 – 5.94 mmol/L, were compared with those obtained in the same samples using a reagent (x) based on the same methodology. The correlation coefficient was 0.988 and the regression equation was y = 0.88x + 0.28 (Std Err of Y Est = 0.19).

Assay Range: 1.0 – 10.0 mmol/L

INTERFERENCE
1. All interference studies were performed according to the procedures recommended in NCCLS guideline No. EP7-P for interference testing in clinical chemistry.12
2. Bilirubin to 20 mg/dL has been demonstrated to have a negligible effect (<5%) on fructosamine results using this method.
3. Hemoglobin to 200 mg/dL has been demonstrated to have a negligible effect (<5%) on fructosamine results using this method.
4. Glucose to 600 mg/dL has been demonstrated to have a negligible effect on fructosamine results using this method.
5. See Young, et al. for other interfering substances.13

EXPECTED VALUES
1.61 – 2.68 mmol/L14
It is strongly recommended that each laboratory establish its own normal range.

REFERENCES

LABELING SYMBOLS
LOT Lot Number
REF Reagent
STD Calibrator
EXP Expiration or “Use By” Date
CAT Catalog Number
VIT For In Vitro Diagnostic Use
-20°C Temperature Limitation. Store between 2 and 8 degrees C
HUMAN Potential Human Biohazard
MANUFACTURER Manufacturer
PKG Consult Package Insert for Instructions for Use
AUTHORIZED Authorized Representative in the European Community

K-ASSAY® Fructosamine + Calibrator

EU AUTHORIZED REPRESENTATIVE
Advena Ltd.
Tower Business Centre, 2nd Flr.,
Tower Street, Swatar, BKR 4013 Malta

ORDERING / PRICING / TECHNICAL INFORMATION
KAMIYA BIOMEDICAL COMPANY
12779 Gateway Drive
Seattle, WA 98168 USA
TEL: (206) 575-8068 / (800) 526-4925
FAX: (206) 575-8094

K-ASSAY® Fructosamine + Calibrator