

KAMIYA BIOMEDICAL COMPANY

Mouse and Rat Corticosterone ELISA

For the quantitative determination of corticosterone in mouse and rat biological fluids

Cat. No. KT-510

For Research Use Only.

PRODUCT INFORMATION

Mouse and Rat Corticosterone ELISA

Cat. No. KT-510

INTENDED USE

The Mouse and Rat Corticosterone ELISA is for the quantitative determination of corticosterone in mouse and rat biological fluids. For research use only.

INTRODUCTION

Corticosterone ($C_{21}H_{30}O_4$, also called 11B,21-Dihydroxyprogesterone, Reichstein's Substance H, or Kendall's Compound B) is, like cortisol and cortisone, a glucocorticoid hormone secreted from the cortex of the adrenal gland. Corticosterone is derived from cholesterol through a series of enzymatically mediated steps and also serves as a precursor of aldosterone. It is a primary glucocorticoid in mice, rats and other animals (such as rabbits, birds, amphibians, and reptilians) in which the 17 α -hydroxylase is supposed to not exist in the adrenal gland. Corticosterone is produced under the control of ACTH and the production has a circadian rhythm with peak levels in the latter portion of the day in nocturnal animals like rats and is believed to play a decisive role in sleep-wake cycles. Corticosterone can be used as a non-invasive biomarker of stress study through the collection of urine and feces to avoid corticosterone increase in blood levels which is caused by normal invasive methods. Corticosterone is also being studied in different fields such as impairment of long-term memory retrieval, chronic corticosterone elevation due to dietary restrictions and response to burn injuries etc.

Since most of corticosterone in blood is bound to a plasma protein called corticosterone-binding globulin (CBG), the determination of blood corticosterone with presently available commercial assay kits requires an initial extraction procedure. On the other hand, the present assay kit for corticosterone newly developed by our laboratory provides a tool for direct determination of corticosterone in blood by simple dilution of blood samples with the diluent included in the kit. Furthermore, assays using the kit can be completed within a short period. The corticosterone ELISA kit newly developed will be quite a useful tool for further development of corticosterone research.

PRINCIPLE

This ELISA kit is used for the quantitative determination of corticosterone in biological fluids such as plasma, serum or urine samples of mice, rats and other species, and also cell or tissue culture supernatant. It has various advantages, such as no extraction procedure of samples, short assay time, and practically no influences of other body fluids or physiological active substances coexisting in samples assayed.

This ELISA kit for the determination of corticosterone is based on a competitive enzyme immunoassay using a combination of specific antibodies to corticosterone and corticosterone-HRP conjugate (HRP-labeled corticosterone) system. The 96 well plate is coated with goat anti rabbit IgG, to which corticosterone calibrator or samples, HRP-labeled corticosterone and specific antibody are added for competitive immunoreaction. After incubation and plate washing, HRP enzyme activity is determined by 3,3',5,5'-tetramethylbenzidine (TMB) and the concentration of corticosterone is calculated.

COMPONENTS

Co	mponent Form	ı Qu	antity	Main Ingredient
1.	Antibody-Coated Plate	Microtiter plate	1 plate (96-well)	Goat anti-rabbit IgG
2.	Corticosterone Calibrator	Lyophilized	1 vial (50 ng)	Synthetic corticosterone
3.	HRP-Labeled Corticosterone	Liquid	1 vial (0.3 mL)	HRP conjugated corticosterone
4.	Specific Antibody	Liquid	1 bottle (7 mL)	Rabbit anti-corticosterone antibody
5.	TMB Substrate	Liquid	1 bottle (12 mL)	TMB (3,3',5,5'-tetramethylbenzidine)
6.	Stop Solution	Liquid	1 bottle (12 mL)	1 M H ₂ SO ₄
7.	Buffer Solution	Liquid	1 bottle (10 mL)	PBS buffer containing protein stabilizer
8.	Sample Diluent	Liquid	1 bottle (50 mL)	A specially formulated displacer of CBG
9.	Wash Solution Concentrate	Liquid	1 bottle (25 mL)	Concentrated saline
10.	Adhesive Foil		2 sheets	

MATERIALS REQUIRED BUT NOT PROVIDED

- Photometer for microtiter plate (plate reader), which can read extinction 2.5 at 450 nm
- Washing device for microtiter plate and dispenser with aspiration system (optional)
- Micropipettes for volumes between 10 μL 1,000 μL
- Multi-channel pipettes for 8 wells or 12 wells and their tips
- Glass test tubes for preparation of calibrator and sample solutions
- Graduated cylinder (500 mL or 1,000 mL)
- Distilled or de-ionized water
- A microplate shaker (210-240 rpm)

NOTES

Protect reagents from strong light (e.g. direct sunlight) during storage and assay.

Color reaction should be carried out in the dark.

Read optical absorbance of the reaction solution in wells as soon as possible after stopping the color reaction.

Satisfactory performance of the test is guaranteed only when reagents are used from a kit with identical lot number.

As pipetting operations may affect the precision of the assay, precisely pipette corticosterone calibrator solutions or samples into the wells of the assay plate. In addition, use clean test tubes or vessels in the assay and a new tip for each calibrator diluting process and for each sample or calibrator solution pipetting to avoid cross-contamination.

To quantitate accurately, run a calibration curve for each assay.

Corticosterone calibrator solutions and HRP-labeled corticosterone solution should be prepared immediately before use. If the kit is to be divided, the rest of the reconstituted corticosterone calibrator solution (50 ng/mL), HRP-labeled corticosterone solution and other reagents except wash solution and stop solution should be stored at 4°C and used within 2 weeks. Diluted calibrator solutions, except the 50 ng/mL calibrator, should not be reused for another assay.

It is recommended that serum or plasma samples should be used as soon as possible after collection. If the sample is to be tested later, it should be aliquoted and frozen below $-30 \,^{\circ}$ C (for long term storage, in a $-80 \,^{\circ}$ C freezer). Avoid repeated freezing and thawing of samples.

The recommended diluting ratio for mouse or rat samples is 20 - 100 fold, but corticosterone levels significantly differ among animals and also show marked circadian variation even in the same individual. Therefore, optimal dilution tests should be run when handling test samples of other species other than mice or rats. In addition, since progesterone levels increase significantly in pregnant animals, the cross reactivity of the steroid should be considered when such samples are tested.

Incomplete washing of the microplate will interfere with assay precision. If a microplate washer is not available, completely aspirate the solution in the wells of the assay plate to be removed or decant them by inverting the plate and tapping it onto absorbent tissue in each wash cycle. Ensure that there is no residual wash solution in the wells after the final wash.

REAGENT PREPARATION

- Preparation of Calibrator Solution: Reconstitute the lyophilized Corticosterone Calibrator (50 ng/vial) with 1 mL of Sample Diluent, which affords a 50 ng/mL Calibrator Solution. Dilute 0.2 mL of the 50 ng/mL Calibrator Solution with 0.4 mL of Sample Diluent, which yields a 16.67 ng/mL Calibrator Solution. Repeat the same dilution procedure to make 5.56, 1.85, 0.62, and 0.21 ng/mL Calibrator Solutions. Sample Diluent is used as the 0 ng/mL Calibrator.
- 2. Preparation of HRP-labeled corticosterone solution: Take 0.25 mL of HRP-labeled Corticosterone from the labeled vial and dilute with 7 mL of Buffer Solution.
- 3. Dilution of Wash Solution Concentrate: Dilute one bottle of Wash Solution Concentrate (25 mL) to 500 mL with distilled or de-ionized water.
- 4. The other reagents are ready for use.

ASSAY SAMPLE PREPARATION

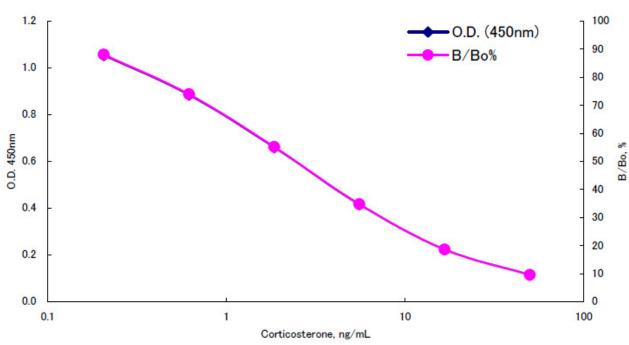
- 1. For mouse/rat plasma and serum: Dilute 10 μL of plasma or serum sample with 400 μL of Sample Diluent in a test tube. Mix the diluted solution and allow it to stand for 10 minutes at room temperature.
- 2. For mouse/rat urine: Dilute 10 μL of urine sample (40 to 100 fold) with Sample Diluent in a test tube. Mix the diluted solution and allow it to stand for 10 minutes at room temperature.
- 3. For culture supernatant (RPMI1640 with or without FCS): Dilute 50 μL of supernatant with 250 μL of Sample Diluent in a test tube. Mix the diluted solution and allow it to stand for 10 minutes at room temperature.
- 4. For other species or matrix samples: Because corticosterone concentrations are different significantly in various species of animals, it is recommended that a series of diluted samples are prepared and tested to find the optimal dilution ratio before assay.

STORAGE

Store kit at 4°C. The kit is stable until expiration date listed on box.

ASSAY PROTOCOL

- 1. Bring all the reagents, except test samples, to room temperature (22-25 °C) before starting assay.
- Add 350 µL of diluted Wash Solution to each well and keep it for about 30 seconds, and then aspirate or decant the wash solution in the wells. Invert the plate and tap onto an absorbent surface, such as paper toweling, to ensure blotting free of most of the residual Wash Solution.
- Pipette 100 μL of corticosterone calibrator solutions (0, 0.21, 0.62, 1.85, 5.56, 16.67, and 50 ng/mL) or diluted samples, after being vortexed, into appropriate wells. Add 50 μL of HRP-labeled corticosterone solution into each well, and finally add 50 μL of Specific Antibody into each well.
- 4. Cover the plate with adhesive foil and incubate it on a shaker at 210-220 rpm room temperature for two hours.
- 5. After incubation, take off the adhesive foil, aspirate or decant the solutions in the wells. Add 350 μL of diluted wash solution to each well and keep it for about 30 seconds, and then aspirate or decant the wash solution in the wells. Repeat this wash process 4 times (total 5 times). Finally, invert the plate and tap onto an absorbent surface, such as paper toweling, to ensure blotting free of most of the residual Wash Solution.
- 6. Add 100 μL of TMB Substrate into each well.
- 7. Cover the plate with adhesive foil and incubate it on a shaker at 210-220 rpm at room temperature for 30 minutes.
- 8. Add 100 μL of Stop Solution into each of the wells to stop color reaction.
- 9. Read optical absorbance of the solution in the wells at 450 nm.


KAMIYA BIOMEDICAL COMPANY

RESULTS

The assay fits best to a 4-parameter logistic equation, $Y = (a-d)/(1+(x/c)^b)+d$; here a,b,c,d represent constant parameter. Alternatively, calculate mean optical density values of wells containing calibrators or their percent bound to maximum binding wells (0 ng/mL) and plot a calibration curve on semilogarithmic graph paper (abscissa: concentration of calibrator; ordinate: optical density values or bound%). Use the average optical density or bound% of each sample to determine the corresponding value by simple interpolation from this calibration curve. The results should be multiplied by the dilution factor to obtain the actual concentrations for undiluted unknown samples. Perform all the determinations in duplicate.

PERFORMANCE

Typical Calibration Curve (example only, a new calibration curve for each run must be established by the end-user) Typical standard curve of corticosterone EIA

Assay Range

0.21 - 50 ng/mL

Sensitivity

Sensitivity can be calculated using the following formula under the guidelines listed in the National Committee for Clinical Laboratory Standards (NCCLS) Evaluation Protocols.

Sensitivity (ng/mL) = <u>2 X SD of the Zero Calibrator X 0.21 ng/mL</u> (Optical Density of 0 ng/mL – Optical density of 0.21 ng/mL)

	Intra-assay variation (mean \pm SD, n=10)) Inter-assay variation (mean±SD, n=	
	Measured (ng/mL)	%CV	Measured (ng/mL)	%CV
QC sample 1	0.767±0.036	4.7	0.767±0.063	8.2
QC sample 2	2.802±0.105	3.7	2.655±0.205	7.7
QC sample 3	7.837±0.197	2.5	6.951±0.683	9.8

Precision and Reproducibility

Analytical Recovery

Mouse serum	Corticosterone	Observed	Expected	Recovery
	added (ng/mL)	(ng/mL)	(ng/mL)	(%)
No. 1	0	5.933		
	1.52	7.728	7.453	103.7
	4.55	10.202	10.483	97.3
	13.64	18.696	19.573	95.5
No. 2	0	4.660		
	1.52	5.854	6.180	94.7
	4.55	8.464	9.210	91.9
	13.64	15.779	18.300	86.2
No.3	0	2.629		
	1.52	3.943	4.149	95.0
	4.55	6.530	7.179	91.0
	13.64	14.148	16.269	87.0
			· · · · · · · · · · · · · · · · · · · ·	
Mouse plasma	Corticosterone	Observed	Expected	Recovery
	added (ng/mL)	(ng/mL)	(ng/mL)	(%)
No.1	1.52	4.257	4.358	97.7
	4.55	6.577	7.388	89.0
	13.64	14.120	16.478	85.7
No.2	0	2.843		
	1.52	4.215	4.363	96.6
	4.55 13.64	6.569 14.267	7.393 16.483	88.9 86.6
No.3	0	2.855	10.405	00.0
110.5	1.52	4.197	4.375	95.9
	4.55	6.915	7.405	93.9
	13.64	14.801	16.495	93.4 89.7
	. 13.04	14.001	10.793	
Rat serum	Corticosterone	Observed	Expected	Recovery
	added (ng/mL)	(ng/mL)	(ng/mL)	(%)
No.1	0	4.908		
	1.52	6.711	6.428	104.4
	4.55	9.888	9.458	104.5
	13.64	20.396	18.548	110.0
No.2	0	5.462		· · · · · · · · · · · · · · · · · · ·
	1.52	6.317	6.982	90.5
	4.55	10.117	10.012	101.0

No.3	0	4.043		Kamiya Riomedical Compl
	1.52	5.194	5.563	93.4
	4.55	8.209	8.593	95.5
	13.64	16.777	17.683	94.9
· · · ·			,	
Rat plasma	Corticosterone	Observed	Expected	Recovery
	added (ng/mL)	(ng/mL)	(ng/mL)	(%)
No.1	0	6.755		
	1.52	7.777	8.275	94.0
	4.55	11.546	11.305	102.1
	13.64	22.639	20.395	111.0
No.2	0	6.567		
	1.52	7.645	8.087	94.5
	4.55	10.816	11.117	97.3
	13.64	22.094	20.207	109.3
No.3	0	4.463		
	1.52	5.589	5.983	93.4
	4.55	8.824	9.013	97.9
	13.64	18.032	18.103	99.6
Mouse urine	Corticosterone	Observed	Expected	Recovery
	added (ng/mL)	(ng/mL)	(ng/mL)	(%)
No.1	0	6.332		
	1.52	8.340	7.852	106.2
	4.55	12.603	10.882	115.8
	13.64	22.998	19.972	115.2
No.2	0	2.578		
	1.52	4.476	4.098	109.2
	4.55	7.957	7.128	111.6
	13.64	18.517	16.218	114.2
issue culture medium	Corticosterone	Observed	Expected	Recovery
	added (ng/mL)	(ng/mL)	(ng/mL)	(%)
RPMI-1640	0	2.379		
	1.52	3.711	3.899	95.2
	4.55	6.821	6.929	98.4
	13.64	16.496	16.019	103.0
RPMI-1640+	0	0.723		
10% FCS	1.52	2.031	2.243	90.5
	4.55	5.105	5.273	96.8
	1100	5.105	512/5	50.0

KAMIYA BIOMEDICAL COMPANY

ution Toot				
ition Test Mouse serum	Dilution ratio	Observed	Expected	% of expected
	(1X)	(ng/mL)	(ng/mL)	
No.1	1	6.550		
	2	3.368	3.275	102.8
	4	1.700	1.638	103.8
	8	0.936	0.819	114.3
No.2	1	5.408		
	2	2.707	2.704	100.1
	4	1.450	1.352	107.2
	8	0.808	0.676	119.5
No.3	1	3.792		
	2	1.968	1.896	103.8
	4	1.022	0.948	107.8
	8	0.526	0.474	111.0

Mouse plasma	Dilution ratio	Observed	Expected	% of expected
	(1X)	(ng/mL)	(ng/mL)	
No.1	1	3.033		
	2	1.532	1.517	101.0
	4	0.808	0.758	106.6
	8	0.430	0.379	113.4
No.2	1	2.894		
	2	1.559	1.447	107.7
	4 8	0.838 0.436	0.724 0.362	115.8 120.5
No.3	1	2.486		
	2	1.121	1.243	90.2
	4	0.564	0.622	90.7
	8	0.308	0.311	99.1

Rat serum	Dilution ratio	Observed	Expected	% of expected
	(1X)	(ng/mL)	(ng/mL)	
No.1	1	7.660		
	2	3.414	3.830	89.1
	4	1.690	1.915	88.3
	8	0.895	0.958	93.5
No.2	1	6.692		
	2	3.201	3.346	95.7
	4	1.618	1.673	96.7
	8	0.765	0.837	91.5
No.3	1	4.797		
	2	2.302	2.399	96.0
	4	0.981	1.199	81.8
	8	0.583	0.600	97.2
	8	•	•	Bev

Rat plasma	Dilution ratio	Observed	Expected	% of expected
	(1X)	(ng/mL)	(ng/mL)	
No.1	1	6.674		
	2	3.123	3.337	93.6
	4	1.666	1.669	99.9
	8	0.786	0.834	94.2
No.2	1	8.323		
	2	3.969	4.162	95.4
	4	1.831	2.081	88.0
	8	0.981	1.040	94.3
No.3	1	4.635	•	
	2	2.359	2.318	101.8
	4	1.186	1.159	102.4
	8	0.595	0.579	102.7
Mouse urine	Dilution ratio	Observed	Expected	% of expected
	(1X)	(ng/mL)	(ng/mL)	
No.1	1	7.841	•	•
	2	3.642	3.921	92.9
	4	2.011	1.960	102.6
	8	1.095	0.980	111.7
No.2	1	2.912		
	2	1.479	1.456	101.6
	4	0.874	0.728	120.1
	8	0.536	0.364	147.3
			·	
lissue culture medium	Dilution ratio	Observed	Expected	% of expected
	(1X)	(ng/mL)	(ng/mL)	
RPMI-1640	1	2.710		
	2	1.330	1.355	98.2
	4	0.652	0.678	96.2
	8	0.320	0.339	94.5
RPMI1640+	1	0.866		
10% FCS	2	0.586	0.433	135.3
	4	0.240	0.217	110.9
	8		0.108	

Cross Reactivity

Cross reactivities of the antibody used in the kit.

Compound	Cross Reactivity (%)
Corticosterone	100
11-Deoxycorticosterone	<15.5
Progesterone	<5.9
Androstenedione	<5.4
Testosterone	<3.9
Aldosterone	<1.7
Cortisol	<0.5
Cortisone	<0.4
DHEA	<0.05
Estradiol	0
Cholesterol	0

FOR RESEARCH USE ONLY

KAMIYA BIOMEDICAL COMPANY

12779 Gateway Drive, Seattle, WA 98168 Tel: (206) 575-8068 Fax: (206) 575-8094 Email: LifeScience@k-assay.com www.k-assay.com