Rat Retinol Binding Protein ELISA

For the quantitative determination of retinol binding protein in rat biological samples

Cat. No. KT-584

For Research Use Only.
PRODUCT INFORMATION

Rat Retinol Binding Protein ELISA
Cat. No. KT-584

INTENDED USE
The Rat Retinol Binding Protein ELISA is a highly sensitive two-site enzyme linked immunoassay (ELISA) for the quantitative determination of retinol binding protein in rat biological samples. For research use only.

PRINCIPLE
The principle of the double antibody sandwich ELISA is represented in Figure 1. In this assay the Retinol Binding Protein (RBP) present in samples reacts with the anti-RBP antibodies which have been adsorbed to the surface of polystyrene microtiter wells. After the removal of unbound proteins by washing, anti-RBP antibodies conjugated with horseradish peroxidase (HRP), are added. These enzyme-labeled antibodies form complexes with the previously bound RBP. Following another washing step, the enzyme bound to the immunosorbent is assayed by the addition of a chromogenic substrate, 3,3',5,5'-tetramethylbenzidine (TMB). The quantity of bound enzyme varies directly with the concentration of RBP in the sample tested; thus, the absorbance, at 450 nm, is a measure of the concentration of RBP in the test sample. The quantity of RBP in the test sample can be interpolated from the calibration curve constructed from the calibrators, and corrected for sample dilution.

Figure 1.

| Anti-RBP Antibodies Bound To Solid Phase |
| Calibrators and Samples Added |
| RBP * Anti-RBP Complexes Formed |
| Unbound Sample Proteins Removed |
| Anti-RBP-HRP Conjugate Added |
| Anti-RBP-HRP * RBP * Anti-RBP Complexes Formed |
| Unbound Anti-RBP-HRP Removed |
| TMB Substrate Added |
| Determine Bound Enzyme Activity |

COMPONENTS
1. Diluent Concentrate
 One bottle containing 50 mL of a 5X concentrated diluent running buffer.

2. Wash Solution Concentrate
 One bottle containing 50 mL of a 20X concentrated wash solution.

3. Enzyme-Antibody Conjugate Concentrate
 One vial containing 150 µL of a 100X concentrated affinity purified anti-Rat RBP antibody conjugated with HRP in stabilizing buffer.
4. **TMB Substrate Solution**
 One vial containing 12 mL of TMB and hydrogen peroxide in citric acid buffer at pH 3.3.

5. **Stop Solution**
 One vial containing 12 mL of 0.3 M sulfuric acid. **WARNING:** Avoid contact with skin.

6. **Microtiter Plate**
 Twelve removable eight-well strips in well holder frame. Wells are coated with affinity-purified anti-Rat Retinol Binding Protein.

7. **Rat Retinol Binding Protein Calibrator**
 One vial containing a Rat Retinol Binding Protein Calibrator.

MATERIALS REQUIRED BUT NOT PROVIDED

- Precision pipette (2 µL to 200 µL) for making and dispensing dilutions
- Test tubes
- Microplate washer/aspirator
- Distilled or de-ionized H$_2$O
- Microplate reader
- Assorted glassware for the preparation of reagents and buffer solutions
- Timer

PRECAUTIONS

1. Read the instructions carefully before beginning the assay.
2. This kit is for research use only.
3. Great care has been taken to ensure the quality and reliability of this product. However, it is possible that in certain cases, unusual results may be obtained due to high levels of interfering factors.
4. No additives or preservatives are necessary to maintain the integrity of the specimen. Avoid azide contamination.
5. Azide and thimerosal at concentrations higher than 0.1% inhibit the enzyme reaction.
6. Other precautions:
 - Do not interchange kit components from different lots.
 - Do not use kit components beyond the expiration date.
 - Protect reagents from direct sunlight.
 - Do not pipette by mouth.
 - Do not eat, drink, smoke or apply cosmetics where reagents are used.
 - Avoid all contact with the reagents by using gloves.
 - Stop solution contains diluted sulfuric acid. Irritation to eyes and skin is possible. Flush with water after contact.

REAGENT PREPARATION

1. **Diluent Concentrate**
 The Diluent solution supplied is a 5X concentrate and must be diluted 1:5 with distilled or de-ionized water.

2. **Wash Solution Concentrate**
 The Wash Solution supplied is a 20X concentrate and must be diluted 1:20 with distilled or de-ionized water. Crystal formation in the concentrate is not uncommon when storage temperatures are low. Warming of the concentrate to 30-35°C before dilution can dissolve crystals.

3. **Enzyme-Antibody Conjugate Concentrate**
 Calculate the required amount of working conjugate solution for each microtiter plate test strip by adding 10 µL Enzyme-Antibody Conjugate to 990 µL of 1X Diluent for each test strip to be used for testing. Mix uniformly, but gently. Avoid foaming.

4. **TMB Substrate Solution**
 Ready to use as supplied.

5. **Stop Solution**
Ready to use as supplied.

6. Microtiter Plate
 Ready to use as supplied. Unseal microtiter pouch and remove plate from pouch. Remove all strips and wells that will not be used in the assay and place back in pouch and re-seal along with desiccant.

7. Rat Retinol Binding Protein Calibrator
 The calibrator is now at a concentration of 75.2 µg/mL. Rat Retinol Binding Protein Calibrators need to be prepared immediately prior to use according to the table below. Mix well between each step. Avoid foaming.

<table>
<thead>
<tr>
<th>Concentration (ng/mL)</th>
<th>Volume added to 1X Diluent</th>
<th>Volume of 1X Diluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>200</td>
<td>2 µL Rat Retinol Binding Protein Calibrator</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>250 µL Calibrator 6</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>250 µL Calibrator 5</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>250 µL Calibrator 4</td>
</tr>
<tr>
<td>2</td>
<td>12.5</td>
<td>250 µL Calibrator 3</td>
</tr>
<tr>
<td>1</td>
<td>6.25</td>
<td>250 µL Calibrator 2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>500 µL</td>
</tr>
</tbody>
</table>

STORAGE AND STABILITY

1. Complete Kit
 The expiration date for the kit is stated on the outer label. The recommended storage temperature is 4°C. **Note: See long term storage recommendations below for the Rat Retinol Binding Protein Calibrator.**

2. Diluent
 The 5X Diluent Concentrate is stable until the expiration date. The 1X working solution is stable for at least one week from the date of preparation. Both solutions should be stored at 4°C.

3. Wash Solution
 The 20X Wash Solution Concentrate is stable until the expiration date. The 1X working solution is stable for at least one week from the date of preparation. Both solutions can be stored at room temperature (RT, 16-25°C) or at 4°C.

4. Enzyme-Antibody Conjugate
 Undiluted anti-Retinol Binding Protein-HRP conjugate should be stored at 4°C and diluted immediately prior to use. The working conjugate solution is stable for up to 1 hour when stored in the dark.

5. TMB Substrate Solution
 The TMB Substrate Solution should be stored at 4°C and is stable until the expiration date.

6. Stop Solution
 The Stop Solution should be stored at 4°C and is stable until the expiration date.

7. Microtiter Plate
 Anti-Rat Retinol Binding Protein coated wells are stable until the expiration date, and should be stored at 4°C in the sealed foil pouch with desiccant pack.

8. Rat Retinol Binding Protein Calibrator
 Long term storage: Upon receipt, aliquot the calibrator and store them frozen. They will be stable until expiration date. Short term Storage: The calibrator is stable for up to 14 days at 4°C. The working calibrator solutions should be prepared immediately prior to use and are stable for up to 8 hours.

INDICATIONS OF INSTABILITY
If the test is performing correctly, the results observed with the calibrator solutions should be within 20% of the expected values.
SPECIMEN COLLECTION AND HANDLING
Blood should be collected by venipuncture and the serum separated from the cells, after clot formation, by centrifugation. For plasma samples, blood should be collected into a container with an anticoagulant and then centrifuged. Care should be taken to minimize hemolysis, excessive hemolysis can impact your results. Assay immediately or aliquot and store samples at -20°C. Avoid repeated freezing/thawing.

For any sample that might contain pathogens, care must be taken to prevent contact with open wounds. No additives or preservatives are necessary to maintain the integrity of the specimen. Avoid azide contamination.

ASSAY PROTOCOL
Dilution of Samples
The assay for quantification of Retinol Binding Protein in samples requires that each test sample be diluted before use. For a single step determination a dilution of 1:2,000 is appropriate for most serum/plasma samples, and a dilution of 1:20 is appropriate for most urine samples. For absolute quantification of samples that yield results outside the range of the calibration curve, a lesser or greater dilution might be required. If unsure of sample level, a serial dilution with one or two representative samples before running the entire plate is highly recommended.

To prepare a 1:2,000 dilution of sample, transfer 5 µL of sample to 495 µL of 1X Diluent. This gives you a 1:100 dilution. Next, dilute the 1:100 samples by transferring 20 µL to 380 µL of 1X Diluent. You now have a 1:2,000 dilution of your sample. Mix thoroughly at each stage.

To prepare a 1:20 dilution of sample, transfer 20 µL of sample to 380 µL of 1X Diluent. Mix thoroughly.

Procedure
Bring all reagents to RT before use.

1. Pipette 100 µL of
 Calibrator 0 (0.0 ng/mL) in duplicate
 Calibrator 1 (6.25 ng/mL) in duplicate
 Calibrator 2 (12.5 ng/mL) in duplicate
 Calibrator 3 (25 ng/mL) in duplicate
 Calibrator 4 (50 ng/mL) in duplicate
 Calibrator 5 (100 ng/mL) in duplicate
 Calibrator 6 (200 ng/mL) in duplicate

2. Pipette 100 µL of diluted sample (in duplicate) into pre-designated wells.

3. Incubate the Microtiter Plate at 22°C (RT) for sixty (60 ± 2) minutes. Keep plate covered and level during incubation.

4. Following incubation, aspirate the contents of the wells.

5. Completely fill each well with appropriately diluted Wash Solution and aspirate. Repeat three times, for a total of four washes. If washing manually: completely fill wells with diluted Wash Solution, invert the plate and pour/shake out the contents in a waste container. Follow this by sharply striking the wells on absorbent paper to remove residual Wash Solution. Repeat three times for a total of four washes.

6. Pipette 100 µL of appropriately diluted Enzyme-Antibody Conjugate to each well. Incubate at 22°C (RT) for twenty (20 ± 2) minutes. Keep plate covered in the dark and level during incubation.

7. Wash and blot the wells as described in Steps 4 and 5.

8. Pipette 100 µL of TMB Substrate Solution into each well.

9. Incubate in the dark at RT for precisely ten (10) minutes.

10. After ten minutes, add 100 µL of Stop Solution to each well.
11. Determine the absorbance at 450 nm of the contents of each well. Zero the plate reader to air.

The absorbance of the final reaction mixture can be measured up to 2 hours after the addition of the Stop Solution. However, good laboratory practice dictates that the measurement be made as soon as possible.

RESULTS
1. Subtract the average background value from the test values for each sample.

2. Using the results observed for the calibrators construct a calibration curve. The appropriate curve fit is that of a four-parameter logistics curve, although a second order polynomial (quadratic) or other curve fits may also be used.

3. Interpolate test sample values from calibration curve. Correct for sample dilution factor to arrive at Retinol Binding Protein concentration in original sample.

PERFORMANCE CHARACTERISTICS
In accord with good laboratory practice, the assays for specific Retinol Binding Protein require meticulous quality control. Each laboratory should use routine quality control procedures to establish inter- and intra-assay precision and performance characteristics.

LIMITATION OF THE PROCEDURE
1. Reliable and reproducible results will be obtained when the assay procedure is carried out with a complete understanding of the information contained in the package insert instructions and with adherence to good laboratory practice.

2. Factors that might affect the performance of the assay include proper instrument function, cleanliness of glassware, quality of distilled or de-ionized water, and accuracy of reagent and sample pipettings, washing technique, incubation time or temperature.